Senin, 25 Juni 2018

Sponsored Links

ISBN 13 barcode. stock vector. Illustration of price - 61207974
src: thumbs.dreamstime.com

International Standard Book Number ( ISBN ) is a unique numerical commercial identifier. The issuer buys ISBN from an affiliate of the International ISBN Board.

ISBNs are set for each edition and variation (except reprint) of a book. For example, e-books, pocket books, and hardcover editions of the same book will each have a different ISBN. ISBNs are 13 digits long if set on or after January 1, 2007, and 10 digits long if set before 2007. Country-based ISBN assignment methods vary from country to country, often depending on how big the publishing industry is in a country.

The initial ISBN recognition configuration was created in 1967 based on the 9-digit Standard Book Numbering ( SBN ) created in 1966. The 10-digit ISBN format was developed by the International Organization for Standardization (ISO) and published in 1970 as an international standard ISO 2108 (SBN code can be converted to ten ISBN digits by zero prefix).

Personalized books sometimes appear without an ISBN. International ISBN bodies sometimes assign ISBN such books on their own initiative.

Another identifier, International Standard Serial Number (ISSN), identifies periodical publications such as magazines; and the International Standard Music Number (ISMN) includes for music score.


Video International Standard Book Number



Histori

The Standard Book Numbering Code (SBN) is a 9-digit commercial book identification system created by Gordon Foster, Professor Emeritus Statistics at Trinity College, Dublin, for booksellers and stationery and WHSmith and others in 1965. ISBN recognition configurations were made in 1967 in the United Kingdom by David Whitaker (regarded as "Mr. ISBN") and in 1968 in the United States by Emery Koltay (who later became director of the US RR Bowker ISBN agency).

The 10-digit ISBN format was developed by the International Organization for Standardization (ISO) and published in 1970 as an international standard ISO 2108. The British Empire continued to use the 9-digit SBN code until 1974. ISO has appointed the International ISBN Agency as the registration authority for ISBNs throughout world and ISBN Standards developed under the control of ISO 46/Subcommittee Technical Committee 9 TC 46/SC 9. The on-line ISO facility only refers back to 1978.

SBN can be converted to ISBN with prefix digit "0". For example, the second edition of Mr. J. G. Reeder Returns , published by Hodder in 1965, has "SBN 340 01381 8" - 340 which shows the publisher, 01381 their serial number, and 8 as the check number. This can be converted to ISBN 0-340-01381-8; digit check does not need to be recalculated.

Since January 1, 2007, ISBN has 13 digits, a format compatible with "Bookland" European Article Number EAN-13s.

Maps International Standard Book Number



Overview

ISBNs are set for each edition and variation (except reprint) of a book. For example, an ebook, a novel, and a hardcover edition of the same book will each have a different ISBN. ISBN is 13 digits long if set on or after January 1, 2007, and 10 digits long if set before 2007. International Standard Book Number consists of 4 parts (if it is 10 digit ISBN) or 5 parts (for 13 digit ISBN):

  1. for 13-digit ISBNs, prefix element - a GS1 prefix : as far as 978 or 979 has been provided by GS1,
  2. elements of the signup group (language-sharing country group, individual country or region),
  3. the registrar element,
  4. elements of publications , and
  5. the checksum character or check the number.

13-digit ISBNs can be separated into parts ( prefix element , registration group , registrars , publications and < i> tick numbers ), and when this is done it is customary to separate parts with hyphens or spaces. Separating parts ( registration groups , registrars , publications and ticking numbers ) from 10-digit ISBNs is also done with hyphens or spaces. Finding out how to properly separate ISBNs is complicated, as most spare parts do not use a fixed number of digits.

How ISBNs are published

Isbn issuance is country-specific, in ISBN issued by the ISBN registration agent responsible for that country or territory regardless of the publication language. The ISBN range assigned to a particular country is based on the country's publication profile, so the range will vary depending on the number of books and the number, type, and size of the active publisher. Some ISBN registration agencies are based in national libraries or in culture ministries and can thus receive direct funding from governments to support their services. In other cases, the ISBN registration service is provided by organizations such as non-government funded bibliographic data providers.

The full directory of ISBN agents is available on the ISBN International Agency website. Partial listing:

Australia: commercial library service agent Thorpe-Bowker;
Brazil: National Library of Brazil;
Canada (UK): Library and Archives of Canada, a government agency;
Canada (France): BibliothÃÆ'¨que et National archives du QuÃÆ' Â © bec;
Colombia: CÃÆ'¡mara Colombiana del Libro, an NGO;
Hong Kong: Office Registration Book (BRO), under the Hong Kong Public Library;
India: National Agency for King Rammohun Roy's ISBN (Book Promotion and Copyright Division), under the Ministry of Higher Education, a constituency of the Ministry of Human Resources Development;
Italian: EDISER srl , owned by Associazione Italiana Editori (Italian Publishing Association);
Maldives: National Bureau of Classification (NBC);
Malta: National Book Council (Maltese: Il-Kunsill Nazzjonali tal-Ktieb );
Morocco: National Library of Morocco;
New Zealand: National Library of New Zealand;
Pakistan: National Library of Pakistan;
Philippines: National Library of the Philippines;
South Africa: National Library of South Africa;
Turkey: Directorate General of Libraries and Publications, a branch of the Ministry of Culture;
English and the Republic of Ireland: Nielsen Book Services Ltd , part of Nielsen Holdings N.V.;
United States: R.R. Bowker.

Identify registration group

The registration group identifier is a valid 1- to 5-digit number in a prefix element (ie one of 978 or 979). The identification of the registration group has mainly been allocated in the 978 prefix element. The single-digit group identifier in the 978 prefix element is: 0 or 1 for English-speaking countries; 2 for French-speaking countries; 3 for German-speaking countries; 4 for Japan; 5 for Russian-speaking countries; and 7 for the People's Republic of China. An example of a 5-digit group identifier is 99936, for Bhutan. The allocated group IDs are: 0-5, 600-621, 7, 80-94, 950-989, 9926-9989, and 99901-99976. Books published in rare languages ​​usually have longer group identifiers.

In the 979 prefix element, the registration group identifier 0 is reserved for compatibility with the International Standard Music Number (ISMN), but the material is not actually provided by the ISBN. The identification of registration groups in the prefix of 979 elements that have been set is 10 for France, 11 for the Republic of Korea, and 12 for Italy.

The original 9-digit standard number (SBN) book number does not have a registration group identifier, but the leading zero (0) to the 9-digit SBN creates a valid 10-digit ISBN.

Registrar element

The national ISBN Board specifies the registrant element (see Category: ISBN Board) and a series of ISBNs that accompany it in the registrant's element to the publisher; the publisher then allocates one ISBN to each of his books. In most countries, book publishers are not required by law to establish ISBNs; However, most bookstores only handle ISBN bearing publications.

List of over 900,000 published publisher codes, and can be ordered in book form (EUR1399, US $ 1959). The website of the ISBN agent does not offer a free method for finding the publisher code. Some lists have been compiled (from library catalogs) for English groups: identifier 0 and identifier 1.

The publisher receives an ISBN block, with a larger block awarded to publishers who expect it to be needed; Small publishers may receive one or more digit ISBNs for group registration identifiers, multiple digits for registries, and one digit for publication elements. Once the ISBN block is used, the publisher may receive another ISBN block, with different registrar elements. As a result, publishers may have different registrar elements. There may also be more than one identification group of registration used in a country. This may happen after all the registrar elements of a particular enrollment group have been allocated to the publisher.

By using variable block lengths, registration agencies may adjust their ISBN allocations for publishers. For example, a large issuer can be assigned an ISBN block where fewer digits are allocated to registrant elements and multiple digits are allocated for publication elements; Similarly, many titling countries have only a few digits allocated to group registration identifiers and many for registrant and publication elements. Here are some examples of the ISBN-10 code, which describes the block length variations.

Pattern for English ISBN

The English enrollment group element is 0 and 1 (2 of over 220 elements of the enrollment group). Both elements of this registration group are divided into regenerative elements in a systematic pattern, which allows the length to be determined, as follows:

International Standard Book Number - YouTube
src: i.ytimg.com


Check digits

Digit checks are a form of redundancy check used for error detection, the decimal equivalent of a binary check bit. It consists of a single digit calculated from the other numbers in that number. The method for the ten digit code is an extension of SBN, both systems are compatible, and SBN begins with "0" will give the same digit checks without - the digits are eleven basis, and can be 0-9 or X. The system for thirteen digit codes is not compatible and will, in general, provide different check digits of the corresponding 10-digit ISBN, and do not provide the same protection against transposition. This is because a thirteen-digit code is required to be compatible with the EAN format, and therefore can not load "X".

ISBN-10 ticks the digits

The 2001 edition of the official International ISBN Guidebook says that the ISBN-10 check digit - which is the last digit of ten digit ISBN - should range from 0 to 10 (the X symbol is used for 10), and should be such that the sum of all ten digits , each multiplied by the (integer) weighing, down from 10 to 1, is a multiple of 11.

Misalnya, untuk ISBN-10 dari 0-306-40615-2:

                                                                                s                                                                 =                  (                  0                  ÃÆ' -                  10                 )                                   (                  3                  ÃÆ' -                  9                 )                                   (                  0                  ÃÆ' -                  8                 )                                   (                  6                  ÃÆ' -                  7                 )                                   (                  4                  ÃÆ' -                  6                 )                                   (                  0                  ÃÆ' -                  5                 )                                   (                  6                  ÃÆ' -                  4                 )                                   (                  1                  ÃÆ' -                  3                 )                                   (                  5                  ÃÆ' -                  2                 )                                   (                  2                  ÃÆ' -                  1                 )                                                                                                          =                  0                                   27                                   0                                   42                                   24                                   0                                   24                                   3                                   10                                   2                                                                                                          =                  132                  =                  12                  ÃÆ' -                  11                                                                  {\ displaystyle {\ begin {aligned} s & amp; = (0 \ kali 10) (3 \ kali 9) (0 \ kali 8) (6 \ kali 7 ) (4 \ kali 6) (0 \ kali 5) (6 \ 4) (1 \ kali 3) (5 \ 2 2) (2 \ kali 1) \\ & amp; = 0 27 0 42 24 0 24 3 10 2 \\ & amp; = 132 = 12 \ 11 kali {ended}}}   

Secara formal, menggunakan aritmatika modular, kita dapat mengatakan:

                        (          10                     x                         1                                       9                     x                         2                                       8                     x                         3                                       7                     x                         4                                       6                     x                         5                                       5                     x                         6                                       4                     x                         7                                       3                     x                         8                                       2                     x                         9                                                  x                         10                             )         ?          0                                (            mod                       11           )                  .                  {\ displaystyle (10x_ {1} 9x_ {2} 8x_ {3} 7x_ {4} 6x_ {5} 5x_ {6} 4x_ {7} 3x_ {8} 2x_ {9} x_ {10}) \ equiv 0 {\ pmod {11}}.}   

This also applies to ISBN-10 that the sum of all ten digits, each multiplied by weight in ascending from 1 to 10, is a multiple of 11. For this example:

                                                             s                                                             =




















< Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 0 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ÃÆ' - Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 1 ) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â




















< Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 3 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ÃÆ' - Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 2 ) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â




















< Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 0 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ÃÆ' - Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 3 ) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â




















< Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 6 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ÃÆ' - Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 4 ) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â




















< Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 4 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ÃÆ' - Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 5 ) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â




















< Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 0 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ÃÆ' - Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 6 ) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â




















< Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 6 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ÃÆ' - Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 7 ) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â




















< Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 1 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ÃÆ' - Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 8 ) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â




















< Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 5 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ÃÆ' - Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 9 ) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â




















< Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 2 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ÃÆ' - Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 10 ) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â = Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 0 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 6 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 0 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 24 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 20 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 0 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 42 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 8 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 45 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 20 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â = Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 165 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â = Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 15 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ÃÆ' - Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 11 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â {\ displaystyle {\ begin {aligned} s & amp; = (0 \ times 1) (3 \ times 2) (0 \ times 3) (6 \ times 4) (4 \ times 5) (0 \ times 6) (6 \ 7 times) (1 \ times 8) 5 \ 9) (2 \ times 10) \\ & amp; = 0 6 0 24 20 0 42 8 45 20 \\ & amp; = 165 = 15 \ 11 times {ended}}} Â Â

Secara formal, kita dapat mengatakan:

                        (                     x                         1                                       2                     x                         2                                       3                     x                         3                                       4                     x                         4                                       5                     x                         5                                       6                     x                         6                                       7                     x                         7                                       8                     x                         8                                       9                     x                         9                                       10                     x                         10                             )         ?          0                                (            mod                       11           )                  .                  {\ displaystyle (x_ {1} 2x_ {2} 3x_ {3} 4x_ {4} 5x_ {5} 6x_ {6} 7x_ {7} 8x_ {8} 9x_ {9} 10x_ {10}) \ equiv 0 {\ pmod {11}}.}   

The two most common errors in handling ISBNs (eg, typing or writing) are single digits that are altered or transposition of adjacent digits. It can be proved that all legitimate ISBN-10 may have at least two distinct digits each other. It can also be proved that no valid ISBN-10 pair with identical and double digits is redirected. (This is true only because the ISBN is less than 11 digits, and since 11 is a prime number.) Therefore, the ISBN digit testing method ensures that it will always be possible to detect these two most common types of errors, ie if any of these types of errors have been happens, the result will never be a valid ISBN - the number of digits multiplied by its weight will never be a multiple of 11. However, if an error occurs at the publishing house and is undetectable, the book will be issued with an invalid ISBN.

Conversely, it is possible for other types of errors, such as two altered digits, or three changed digits, to generate a valid ISBN (though that is still not possible).

ISBN-10 checks the digits of digits

Each of the first nine digits of the ten digit ISBN - excluding the check digit itself - is multiplied by the weight (integer), down from 10 to 2, and the sum of the nine of these products is found. The value of a check digit is only one number between 0 and 10 which, when added to this sum, means the total is a multiple of 11.

Misalnya, digit cek untuk ISBN-10 dari 0-306-40615- ? dihitung sebagai berikut:

                                                                                s                                                                 =                  (                  0                  ÃÆ' -                  10                 )                                   (                  3                  ÃÆ' -                  9                 )                                   (                  0                  ÃÆ' -                  8                 )                                   (                  6                  ÃÆ' -                  7                 )                                   (                  4                  ÃÆ' -                  6                 )                                   (                  0                  ÃÆ' -                  5                 )                                   (                  6                  ÃÆ' -                  4                 )                                   (                  1                  ÃÆ' -                  3                 )                                   (                  5                  ÃÆ' -                  2                 )                                                                                                          =                  130                                                                  {\ displaystyle {\ begin {aligned} s & amp; = (0 \ kali 10) (3 \ kali 9) (0 \ kali 8) (6 \ kali 7 ) (4 \ kali 6) (0 \ kali 5) (6 \ 4 kali ) (1 \ kali 3) (5 \ 2 2) \\ & amp; = 130 \ end {aligned}}}   

Adding 2 to 130 gives a multiple of 11 (132 = 12 x 11) - this is the only number between 0 and 10 that it does. Therefore, the check number should be 2, and the complete order is ISBN 0-306-40615-2. Value                              x                      10                                 {\ displaystyle x_ {10}}   required to meet these requirements may be 10; if so, an 'X' should be used.

Alternatively, modular arithmetic is suitable for calculating digit checks using modulus 11. The remainder of this sum when divided by 11 (ie modulo value 11), is calculated. The remainder plus the check digit must be equal to 0 or 11. Therefore, the check digit is (11 minus the remaining amount of modulo product 11) modulo 11. Taking the remaining modulo 11 second time takes into account the possibility that the remainder of the first is 0. Without the second modulo operation the calculation could end up with 11 - 0 = 11 invalid ones. (Actually first "modulo 11" is not required, but may be considered simplifying calculations.)

So, the check digit is 2.

It is possible to avoid multiplication in software implementation by using two accumulators. Repeatedly adding t to s calculates the required multiples:

A modular deduction can be done once at the end, as shown above (in this case s can store a value of 496, for an invalid 99999-999-9-X ISBN), or s and t can be reduced by conditional reduction after each addition.

ISBN-13 checks the calculation of digits

The 2005 International Official Manual of ISBN Agency explains how 13 digit ISBN check numbers are calculated. The ISBN-13 check digit, which is the last digit of the ISBN, should be in the range of 0 to 9 and should be such that the sum of all thirteen digits, each multiplied by the (integer) weight, alternating between 1 and 3, is a multiple of 10.

Secara formal, menggunakan aritmatika modular, kita dapat mengatakan:

                        (                     x                         1                                       3                     x                         2                                                  x                         3                                       3                     x                         4                                                  x                         5                                       3                     x                         6                                                  x                         7                                       3                     x                         8                                                  x                         9                                       3                     x                         10                                                  x                         11                                       3                     x                         12                                                  x                         13                             )         ?          0                                (            mod                       10           )                  .                  {\ displaystyle (x_ {1} 3x_ {2} x_ {3} 3x_ {4} x_ {5} 3x_ {6} x_ {7} 3x_ {8} x_ {9} 3x_ {10} x_ {11} 3x_ {12} x_ {13}) \ equiv 0 {\ pmod {10}}.}   

The calculation of the ISBN-13 check digit begins with the first 12 digits of the thirteen-digit ISBN (thereby excluding the check digit itself). Each digit, from left to right, alternately multiplied by 1 or 3, then the product is summed modulo 10 to give a value ranging from 0 to 9. Less than 10, leaving results from 1 to 10. A zero (0) replaces ten (10), so, in all cases, single digit check results.

For example, ISBN check-digit number of 978-0-306-40615- ? are calculated as follows:

 s = 9ÃÆ'â € "1 7ÃÆ'â €" 3 8ÃÆ'â € "1 0ÃÆ'â €" 3 3ÃÆ'â € "1 0ÃÆ'â €" 3 6ÃÆ'â € "1 4ÃÆ'â €" 3 0ÃÆ'â € "1 6ÃÆ'â € "3 1ÃÆ'â €" 1 5ÃÆ'â € "3  Â Â = 9 21 8 0 3 0 6 12 0 18 1 15  Â Â = 93  93/10 = 9 remaining 3  10 - 3 = 7  

So the check figure is 7, and the full sequence is ISBN 978-0-306-40615-7.

In general, the ISBN-13 check digit is calculated as follows.

Membiarkan

                        r          =                                  (                              10          -                                  (                                         x                         1                                       3                     x                         2                                                  x                         3                                       3                     x                         4                                      ?                              x                         11                                       3                     x                         12                                                     )                                                  mod                                                      10                                 )                             .                  {\ displaystyle r = {\ big (} 10 - {\ big (} x_ {1} 3x_ {2} x_ {3} 3x_ {4} \ cdots x_ {11} 3x_ {12} {\ big)} \, {\ bmod {\,}} 10 {\ big)}.}   

Kemudian

                                   x                         13                              =                                  {                                                                 r                                                                           Â; Â                                       r  ÂÂ

Source of the article : Wikipedia

Comments
0 Comments